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Abstract

We discuss three ways of obtaining the Born approximation for Coulomb
scattering: The standard way, making use of a convergence factor (“screen-
ing”), Oppenheimer’s way using cylindrical (instead of spherical) coordi-
nates, and finally Landau and Lifshitz’ way. The last one although it
does require some background from the theory of generalized functions is
nevertheless a very instructive and important technique deserving more
exposure to physicists.
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1 Introduction

Scattering theory is a very important subject since our knowledge about elemen-
tary particles and their interactions is based mainly on scattering experiments.
Quantum mechanics texts, e.g., [1], [2], [3], usually deal with potential scat-
tering, the Born series expansion for the scattering amplitude and work out
examples using its lowest term of the series, namely, the Born approximation.
In the present paper we shall be concerned with the calculation of the Born ap-
proximation for Coulomb scattering, however we would like to refer the reader
to reference [4] for some applications of the Born approximation in strong in-
teractions.

Rutherford in his seminal 1911 paper on atomic structure [5], derived the
expression for the differential cross section of Coulomb scattering, using only
classical mechanics (a derivation may found in ref. [6]). In fact Rutherford
introduced the concept of what we now call the differential cross section for
potential scattering. As Weinberg points out [2], Rutherford was lucky, in that
the Coulomb case is the only one for which the classical mechanics result agrees
perfectly with the quantum mechanics result!

It was not until 1926 that Born [7], [8], using quantum mechanics, derived the
series expansion for the scattering amplitude whose lowest term is the Born ap-
proximation, fB. Born also noted the fact that each term in this series diverges
for the case of the Coulomb potential. Four months later, Wentzel [9], evalu-
ated fB, for Coulomb scattering, in spherical coordinates, by making use of a
convergence factor. To our knowledge, all quantum mechanics texts perform the
integration involved in calculating fB, using Wentzel’s limiting procedure. How-
ever, in 1927 Oppenheimer [10], derived the Born approximation for Coulomb
scattering without the use of Wentzel’s limiting procedure by performing the
integrations in cylindrical coordinates. Unfortunately, due to his choice of the
orientation of the momentum transfer vector ~q, his calculation is too compli-
cated and this is probably the reason it has disappeared from the literature.
In this paper we greatly simplify and clarify Oppenheimer’s calculation in the
hope that this version will be a useful alternative to lecturers on this subject.
Finally we present an evaluation found in a lesser known Landau and Lifshitz
text [11]. Although we believe this derivation to be the best, it involves a num-
ber of mathematically illegal steps. We clarify the derivation and supply the
necessary generalized function theory machinery thus making all steps rigorous.
.
In Sec. 2 we review the standard calculation of the Born approximation for

Coulomb scattering. In Sec. 3 we give the simplified version of Oppenheimer’s
approach. In Section 4 we go over the Landau and Lifshitz derivation. Section
5 is devoted to an elementary presentation of all the necessary tools from the
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theory of generalized functions. Finally in Sec. 6 we sum up our results. Ap-
pendix A deals with our choice of units and dimensions, Appendix B is a review
of potential scattering, and Appendix C we give some details of Oppenheimer’s
original calculation.

2 The Born approximation I

We first outline the standard calculation of the scattering amplitude in the
Born approximation. It is convenient to adopt Planck natural units so that,
c = ~ = 1, see Appendix A for more details. The momentum transfer vector ~q,
is given by (see Appendix B, Fig. 1)

~q = ~p ′
1
− ~p1, (2.1)

where ~p1 and ~p ′
1
are, respectively the initial and final momenta of one of the

particles in the center of mass frame. For elastic scattering, |~p1| = |~p ′
1
| = p, and

we have that,

q = 2p sin

(
θ

2

)
, (2.2)

where θ ∈ [0, π] and q ∈ [0, 2p].

For a spherically symmetric potential energy, V (r), the scattering amplitude,
in the Born approximation, is given by Eq. (B.20) in Appendix B.2, see e.g.,
[1],

fB = −
m

2π

∫
V (r)e−i~q·~rd3r, (2.3)

where, m = m1m2/(m1+m2), is the reduced mass, so that for electron - proton
scattering, m ≈ me. When using spherical coordinates, (r, ϑ, φ), to evaluate
Eq. (2.3), it is important to bear in mind that the angle ϑ, is not related to
the scattering angle θ in Eq. (2.2). In performing the integrations it is most
convenient to choose the polar axis in the direction of the vector ~q, then the
exponent −i~q · ~r = −iqr cosϑ. Integrating over ϑ and φ, we obtain

fB = −
2m

q

∫ ∞

0

V (r) sin (qr) r dr. (2.4)

In the Gaussian system of units (see Appendix A) the Coulomb potential energy
(or Coulomb potential for short) is given by

V (r) =
e1e2
r

, (2.5)

where ei = Ni(±e), i = 1, 2, e > 0 and Ni = positive integer. To keep our
notation simple, we will let Ni = 1, thus we write

V (r) =
±e2

r
· (2.6)
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The signs, (+,−), correspond to repulsion and attraction respectively.

The convergence of the integral in Eq. (2.4), in spherical coordinates, requires
that [12], ∫ ∞

0

r2|V (r)| dr <∞. (2.7)

thus it is evident that V (r) does not vanish sufficiently fast at large r to allow
for a straightforward evaluation of the above integral.

The universally adopted procedure in the Coulomb case is to define fB using
the expression below

fB := lim
λ→ 0

(
−
2m

q

∫ ∞

0

V (λ, r) sin (qr) r dr

)
, (2.8)

where V (λ, r) is often referred to as the screened Coulomb potential,

V (λ, r) = ±e2
(
e−λr

r

)
· (2.9)

The parameter λ, in our units has dimensions of inverse length (or mass), and
so it is related to a cutoff length rc, by λ = 1/rc. The exponential factor in Eq.
(2.9) is a qualitative description for the screening of the nuclear charge of an
atom by the electrons of the surrounding shells (regarded as a continuous charge
density). A potential of the form (2.9) is also known as the Yukawa potential
because it was proposed by Yukawa [13] to describe the strong nucleon-nucleon
interaction mediated by the exchange of a spinless boson of mass λ, (with g2

instead of e2).

Wentzel [9], who did the original calculation of the Born approximation for
the Coulomb potential, wrote: “So you cannot get by with the pure Coulomb
field (our Eq. (2.5)), but at least qualitatively you have to take into account the
screening by the outer electron shells” (our italics). Under the circumstances
the cutoff rc would be of the order of an atomic radius. However he added
that “...the special choice of the exponential function in (our Eq. (2.9)) is com-
pletely irrelevant for the end result; it only offers the advantage of ensuring the
convergence of the method in the simplest possible way.” A lot of research on
screening, both theoretical [14], [15] and experimental [16], [17] has been carried
out.

Nevertheless it is important to recall that the Born approximation for Coulomb
scattering is also valid for electron-electron scattering where there is no screen-

ing in the above sense. Here one would have to introduce the idea of vacuum
polarization of the virtual pairs and charge renormalization [18], [19], [20], and
make an intuitive argument along the lines that effectively, the target charge
varies, and

e→ e
(
e−λr

)
. (2.10)
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Oppenheimer’s approach avoids these problems by obtaining fB, without the
need of a convergence factor.

It is worth pointing out that, higher order terms in the Born series with the
potential of Eq. (2.9), diverge in the limit λ→ 0 [21], [22], and require a special
procedure in order to cancel the divergences [23].

We should add that Mott [24], and independently Gordon [25], calculated
the exact Coulomb potential scattering amplitude, by solving the Schrödinger
equation. Although their approaches are very different, neither of them needed
any convergence factor. Both calculations are rather demanding and Gordon’s
method, making use of parabolic coordinates, is the one usually worked out but
only in more advanced quantum mechanics texts [1], [21]. Gordon’s solution is
another example where a judicious choice of the coordinate system was helpful.

In the usual approach, Eq, (2.8) is the Laplace transform of sin (qr). The
integration is standard and is done by performing two integrations by parts,
thus

fB = lim
λ→ 0

(
∓

2me2

q

∫ ∞

0

e−λr sin (qr) dr

)
, (2.11)

= lim
λ→ 0

(
∓

2me2

q2 + λ2

)
, (2.12)

= ∓
2me2

q2
, (2.13)

= ∓
me2

2p2 sin2
(
θ
2

) , (2.14)

where we have used Eq. (2.2).

3 The Born approximation II

In this section, following Oppenheimer’s idea, we begin with Eq. (2.3) and use
cylindrical coordinates (z, ̺, ϕ). In contrast with his choice of the orientation
of the momentum transfer ~q, (see Appendix C, Eq. (C.11)), we choose the
direction of the vector ~q to be along the positive z-axis, thus the exponent
in the integrand of Eq. (2.3) is −i~q · ~r = −iqz, which simplifies considerably
Oppenheimer’s original calculation. The Coulomb potential V , Eq. (2.6), is
now given by

V (̺, z) = ±
e2√
̺2 + z2

· (3.1)
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The resulting integrals in this case are referred to as iterated integrals, i.e., the
integrations over z and ρ have to be done in the order below, (Oppenheimer does
not mention this). The condition under which one is allowed to interchange the
order of integration is given by Fubini’s theorem [26], and the integrals in Eq.
(3.2), fail to satisfy this condition because the integration of the absolute value
of the integrand over z does not converge. Therefore we have that

fB := ∓
me2

2π

∫ ∞

0

̺ d̺

∫ ∞

−∞

e−iqz

√
̺2 + z2

dz

∫
2π

0

dϕ , (3.2)

= ∓me2
∫ ∞

0

̺ d̺

∫ ∞

−∞

e−iqz

√
̺2 + z2

dz , (3.3)

= ∓ 2me2
∫ ∞

0

̺K0(q̺) d̺ , (3.4)

= ∓
2me2

q2
, (3.5)

which is again Eq. (2.13). K0 is a modified Bessel function of the second kind.
The integrals involved in Eq. (3.3) and (3.4) may found, for example, in ref. [27],
or may obtained immediately using Mathematica [28], or any other symbolic
computation software. In connection with the integral in Eq. (3.4), we remark
that although, lim̺→0 [K0(q̺)] → ∞, it turns out that, lim̺→0 [̺K0(q̺)] = 0
so everything is well-behaved.

4 The Born approximation III

In this section we present our final calculation of the Born approximation for
the Coulomb case which was given as far as we know only in a less known text
by Landau and Lifshitz [11], (not to be confused with [1]). This derivation takes
advantage of the fact that the Born approximation of the scattering amplitude,
fB, Eq. (2.3), is, apart from an overall constant, the Fourier transform of the
potential V (~r ). In our derivation below, we initially assume that the function
g(~r ) is sufficiently well-behaved so that the various steps in the calculation are
permissible. An example of such a function is g(~r ) = exp

(
−r2/2

)
. Then, in

Section 5, we present a sufficient amount of the theory of generalized functions
to enable us to make all the steps mathematically rigorous.

The Fourier transform ĝ(~q ) of the function g(~r ) is given by

ĝ(~q ) =

∫
g(~r ) e−i~q·~r d3r . (4.1)
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where, in Cartesian coordinates (x, y, z), we have, d3r = dxdydz, d3q = dqxdqydqz ,
and all limits of integration are −∞ to +∞.

We recall the integration by parts formula involving two functions f and ϕ,
∫
ϕdf = fϕ−

∫
fdϕ, (4.2)

and remark that if the functions f and ϕ are such that the product fϕ vanishes
at ±∞ in R3, then Eq. (4.2) reduces to

∫
ϕdf = −

∫
fdϕ. (4.3)

With this in mind, and integrating by parts twice, one can show that the Fourier

transform △̂g of △g =
(
∂2x + ∂2y + ∂2z

)
g, is

∫
(△g) e−i~q·~r d3r =

∫
g△

(
e−i~q·~r

)
d3r = −q2 ĝ(~q ), (4.4)

where q2 = q2x + q2y + q2z . Then from Eqs. (4.1) and (4.4), we have that

ĝ(~q ) =

∫
g(~r ) e−i~q·~r d3r = −

1

q2

∫
(△g) e−i~q·~r d3r. (4.5)

In our case, using Eq. (2.3), we see that

fB = −
m

2π

∫ (
±e2

)

r
e−i~q·~rd3r, (4.6)

= ∓

(
me2

2π

)∫
e−i~q·~r

r
d3r := ∓

(
me2

2π

)
ĝ(~q ), (4.7)

and so

g(~r ) =
1

|~r |
, (4.8)

where |~r | = r =
√
x2 + y2 + z2. At this point we use the equation,

△
1

|~r |
= −4πδ(~r ). (4.9)

Equation (4.9) shall be derived in the next section using the appropriate math-
ematical tools. Substituting Eq. (4.9) in Eq. (4.5), we find that

ĝ(~q ) =
4π

q2
, (4.10)

which when substituted in Eq. (4.7) gives us the desired scattering amplitude

fB = ∓
2me2

q2
· (4.11)
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It is clear that in the integration by parts, which led to Eqs. (4.4), we ne-
glected a divergent term, furthermore the resulting integrals do not exist! For
the g(~r ) of Eq. (4.8), the preceding calculations can only be made rigorous
in the context of the theory of generalized functions. In Sec. 5 we present a
concise introduction to the necessary formalism, we derive Eq. (4.9) and prove
Eq. (4.4).

5 Generalized functions

In this Section we present the minimum amount of the theory of generalized
functions required in order to put the calculations in Sec. 4 on a mathemat-
ically sound basis. In addition we believe that this presentation will make it
easier for readers to pursue the subject in any of the excellent textbooks [29],
[30], [31], [32], [33]. For a review of generalized functions in connection with
applications to electromagnetism we recommend [34].

We shall be concerned with applications involving Fourier transforms and for
that reason we shall require a set of “test” functions ϕ(x) (initally in R1) which
are called good or rapidly decreasing test functions.

Definition 1. A function ϕ is said to be good if ϕ ∈ C∞ and if

lim
|x|→∞

∣∣∣∣xm
dk

dxk
ϕ(x)

∣∣∣∣ = 0, (5.1)

for every integer m ≥ 0 and every integer k ≥ 0. It is evident that if ϕ is good

so is dϕ/dx.

In the customary notation we write, ϕ ∈ S, where S is the space of good test
functions.

Now we let f be a functional. The functional f assigns a number to any good
test function ϕ denoted 〈f, ϕ〉. If f is a locally integrable function, then we may
write

〈f, ϕ〉 =

∫ ∞

−∞

f(x)ϕ(x)dx. (5.2)

However if f is not a locally integrable function, then the right-hand side of Eq.
(5.2) does not make sense. In order for 〈f, ϕ〉 to be a finite number for ϕ ∈ S,
it is sufficient, but not necessary, to restrict f(x) to the space of functions of
slow growth. This is an important set of functions that will enable us to deal
with cases where the right-hand side of Eq. (5.2) does not make sense, and
give meaning to 〈f, ϕ〉 by introducing the concept of generalized functions, (see
Example 1 below). The terms generalized function and distribution will be used
interchangeably in what follows.
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Definition 2. A function f(x) is said to be a function of slow growth if, for

some (finite) integer N ≥ 0,
∫ ∞

−∞

|f(x)|

(1 + x2)
N
dx <∞. (5.3)

We say that f ∈ K. The generalization of Definition 2 to n dimensions is
straightforward, x2 → r2 = x2

1
+ · · · + x2n, etc. For example (for n = 3) the

function f = (1/r) ∈ K (use spherical coordinates).

Note that good functions decrease faster than any power of |x| as x → ±∞,
e.g., exp (−x2), (but note that exp (−|x|) is not a good function). Functions f
of slow growth grow at infinity like polynomials, e.g., exp (ix).

Remark 1. An important and rather obvious consequence is a theorem that

states that the product of a function f of slow growth and a rapidly decreasing

function ϕ, is a rapidly decreasing function fϕ.

Definition 3. The piecewise continuous function of slow growth f(x), defines
the tempered distribution (or distribution of slow growth)

〈f, ϕ〉 =

∫ ∞

−∞

f(x)ϕ(x)dx, (5.4)

for all good functions ϕ.

The set of all tempered distributions is denoted by S′.

We can now differentiate f(x) using integration by parts,
∫ ∞

−∞

df(x)

dx
ϕ(x)dx = [f(x)ϕ(x)]

∞
−∞ −

∫ ∞

−∞

f(x)
dϕ(x)

dx
dx. (5.5)

It follows from Remark 1 that [f(x)ϕ(x)]∞−∞ = 0, therefore we simply have that

〈f ′, ϕ〉 =−〈f, ϕ′〉, (5.6)

〈f ′′, ϕ〉 =−〈f ′, ϕ′〉 = 〈f, ϕ′′〉, (5.7)

and so forth. Note that Eqs. (5.6) and (5.7) hold even if f(x) is not differentiable
(since ϕ is).

Remark 2. It is easy to see that the generalized derivative, Eq. (5.6), of a

generalized function, f , is also a generalized function, f ′.

Example 1. As our first example we show how to obtain the Dirac δ function

as the derivative of the unit step function

θ(x) =

{
1, x ≥ 0

0, x < 0 .
(5.8)
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Although the derivative, θ′(0) does not exist in the usual sense. θ(x) ∈ K and
ϕ ∈ S, therefore from Eq. (5.6), we have

〈θ′, ϕ〉 = −

∫ ∞

−∞

θ(x)
dϕ

dx
dx, (5.9)

= −

∫ ∞

0

dϕ

dx
dx, (5.10)

= −ϕ(x)|∞
0

= ϕ(0) := 〈δ, ϕ〉 ∈ S′. (5.11)

So θ′(x) maps every test function ϕ(x) to its value at the origin and enables us
to define the generalized function δ(x).

We now turn our attention to the Fourier transform. We recall that the
Fourier transform f̂(x) (or [f(x)]

∧
), of a well-behaved function f(x), is

f̂(q) =

∫ ∞

−∞

f(x) e−iqx dx . (5.12)

We need to make use of Parseval’s equation, which for well-behaved functions
f and g, is easy to prove using Fubini’s theorem [26],

∫ ∞

−∞

f̂(q)g(q)dq =

∫ ∞

−∞

[∫ ∞

−∞

f(x)e−iqxdx

]
g(q)dq, (5.13)

=

∫ ∞

−∞

f(x)

[∫ ∞

−∞

g(q)e−iqxdq

]
dx, (5.14)

=

∫ ∞

−∞

f(x)ĝ(x)dx. (5.15)

Definition 4. Let f(x) be a piecewise continuous function of slow growth, then

we use Parseval’s equation to define the Fourier transform f̂ , of the generalized

function f , to be

〈f̂ , ϕ〉 := 〈f, ϕ̂〉, (5.16)

for all good functions ϕ.

In order for Definition 4 to be meaningful we need the theorem below which we
state without proof.

Theorem 1. If ϕ(x) is a good function so is its Fourier transform ϕ̂(q).

This is the reason why the test functions ϕ had to be good. From Theorem 1
and Definition 3 it follows that if f is a function of slow growth, then its Fourier
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transform f̂ is a tempered distribution (generalized function of slow growth).

Since ϕ is a good function, it is easy to deduce by direct calculation that for k
a non-negative integer

∂k (ϕ̂) =
[
(−ix)kϕ

]∧
, (5.17)

[
∂kϕ

)
]∧ = (iq)kϕ̂. (5.18)

Example 2. We show that the Fourier transform of the δ function is 1.

〈δ̂, ϕ〉 = 〈δ, ϕ̂〉 = ϕ̂(0) =

∫ ∞

−∞

ϕ(x)dx = 〈1, ϕ〉, (5.19)

where we have used Eq. (5.11).

Remark 3. The above example is simple but it is important to note that every

step in Eqs (5.19) is independent of the particular ϕ.

Using Eqs. (5.15), (5.6) and (5.7) we obtain two very handy results.

Corollary 1.

〈(̂f ′), ϕ〉 = 〈f ′, ϕ̂〉 = −〈f, (ϕ̂)′〉. (5.20)

Corollary 2.

〈(̂f ′′), ϕ〉 = 〈f ′′, ϕ̂〉 = −〈f ′, (ϕ̂)
′
〉 = 〈f, (ϕ̂)

′′
〉. (5.21)

We re-write Eq. (5.21) for clarity

∫ ∞

−∞

[
d2

dx2
f(x)

]∧
(q)ϕ(q)dq =

∫ ∞

−∞

f(x)

(
d2

dx2
ϕ̂(x)

)
dx. (5.22)

Remark 4. All of the preceding results in this Section can be extended (with
appropriate minor changes) to several dimensions, that is, x ∈ Rn. Thus, for

example, for x ∈ Rn Eqs. (5.7) and (5.21) become

〈△f, ϕ〉 = 〈f,△ϕ〉, (5.23)

〈(̂△f), ϕ〉 = 〈f,△ (ϕ̂)〉, (5.24)

where

△ =
(
∂2
1
+ · · ·+ (∂2n

)
. (5.25)

The first step in the derivation of Eq. (4.9) is to prove the following theorem.
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Theorem 2. ∫

R3

(△f)ϕd3r =

∫

R3

f

r2
∂

∂r

(
r2
∂ϕ

∂r

)
d3r, (5.26)

where f = f(r) ∈ K, (a function of slow growth), ϕ = ϕ (r, θ1, θ2) ∈ S, (a good

function), and d3r := r2drdΩ = r2dr sin θ1dθ1dθ2.

Proof:

Remark 5. In ref. [29] it shown that in Rn it is sufficient to work with good

functions which are the product of n good functions ϕk, each of which is a

function of a single variable.

Thus in R3 we may write, without loss of generality,

ϕ = ϕ (r, θ1, θ2) = ϕ(x, y, z) = ϕ1(x)ϕ2(y)ϕ3(z), (5.27)

= ϕ1(r sin θ1 cos θ2)ϕ2(r sin θ1 sin θ2)ϕ3(r cos θ1). (5.28)

We shall make use of the fact that ϕ is periodic in θ2, and

lim
r→0

ϕ (r, θ1, θ2) := ϕ(0). (5.29)

From Eq. (5.23) we have that

∫

R3

(△f)ϕd3r =

∫

R3

f△ϕd3r, (5.30)

and, in spherical coordinates,

△ϕ = A+B + C , (5.31)

where

A =
1

r2
∂

∂r

(
r2
∂ϕ

∂r

)
, (5.32)

B =
1

r2 sin θ1

∂

∂θ1

(
sin θ1

∂ϕ

∂θ1

)
, (5.33)

C =
1

r2 sin2 θ1

∂2ϕ

∂ θ2
2

· (5.34)

Thus we write
∫

R3

f△ϕd3r =

∫

R3

f(A+B + C)r2drdΩ, (5.35)
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and consider the third term on the right-hand side,

∫

R3

fCr2drdΩ (5.36)

=

∫
· · ·

∫
2π

0

∂2ϕ

∂ θ2
2

dθ2 =

∫
. . .

[
∂ϕ

∂θ2

]2π

0

= 0, (5.37)

because ϕ has period 2π in θ2, (see Eq. (5.28)). Now we consider the second
term on the right-hand side of Eq. (5.35),

∫

R3

fBr2drdΩ (5.38)

=

∫
· · ·

∫ π

0

∂

∂θ1

(
sin θ1

∂ϕ

∂θ1

)
dθ1, (5.39)

=

∫
. . .

[
sin θ1

∂ϕ

∂θ1

]π

0

= 0 , (5.40)

since ∂ϕ/∂θ1 is bounded and continuous. Therefore,

∫

R3

(△f)ϕd3r =

∫

R3

fAd3r, (5.41)

which completes the proof of Eq. (5.26).

We now proceed to the final step required to prove Eq. (4.9). We let

f =
1

r
, ⇒

∂f

∂r
= −

1

r2
· (5.42)
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Recall that f ∈ K. Then integrating by parts Eq. (5.41), we have

∫

R3

(△f)ϕd3r =

∫

R3

fAd3r (5.43)

=

∫

R3

f
∂

∂r

(
r2
∂ϕ

∂r

)
drdΩ, (5.44)

=

∫
dΩ

[
fr2

∂ϕ

∂r

]∞

0

−

∫

R3

∂f

∂r
r2
∂ϕ

∂r
d3r. (5.45)

=

∫

R3

∂ϕ

∂r
drdΩ =

∫
2π

0

∫ π

0

[ϕ]
∞
0
dΩ (5.46)

= −ϕ(0)

∫
2π

0

∫ π

0

dΩ = −4πϕ(0). (5.47)

where we have used Eq. (5.29). Using the generalization of Eq. (5.11), we have
shown that

∫

R3

(△f)ϕd3r = −4π

∫

R3

δ(~r )ϕ(~r )d3r = −4πϕ(0). (5.48)

It is in this sense that we may write

△

(
1

r

)
= −4πδ(~r ). (5.49)

Remark 6. We believe that the following statement about δ(x) from Friedman’s

early text [35] captures the essence of generalized functions: “We notice that the

function δ(~r ) is treated exactly as if it were an ordinary function except that we

shall never talk about the “values” of δ(~r ). We talk about the values of integrals

involving δ(~r )”.

We do need to prove one last proposition, namely, Eq. (4.4).

Proposition 1. If f ∈ K, then

[△f ]
∧
(~q ) = −q2f̂(~q ). (5.50)

Proof:

We shall make use of the generalization of Eq. (5.17) to R3, namely,

△ϕ̂ =
[
−q2ϕ

]∧
. (5.51)
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Thus

〈△̂f, ϕ〉 = 〈△f, ϕ̂〉 = 〈f,△ϕ̂〉, (5.52)

= 〈f,
[
−q2ϕ

]∧
〉 = 〈f̂ ,−q2ϕ〉, (5.53)

= 〈−q2f̂ , ϕ〉, (5.54)

which is Eq. (5.50) or (4.4).

6 Summary

We saw that in Wentzel’s approach in Sec. 2, Eqs. (2.8), (2.9), the prescription
is: Perform the integration first and then take the limit λ → 0. In Oppen-
heimer’s approach Sec. 3, Eq. (3.3), the prescription is: Do the iterated inte-
grals in the prescribed order. There is no escaping the fact that the Coulomb
potential does not satisfy Eq. (2.7) and consequently evaluating the Born ap-
proximation requires special care. We hope that our simplification and clari-
fication of Oppenheimer’s calculation will be be a useful addition to the usual
textbook presentations on this subject. However we believe that Landau and
Lifshitz derivation using the theory of generalized functions is the most satis-
factory both from the mathematical and physics point of view since it does not
require any extraneous assumptions.
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Appendices

A Units and dimensions

We use Planck natural units, c = ~ = 1, and with respect to the electromagnetic
equations, Gaussian units. Thus the Coulomb potential energy for two simple
charges, each ±e, e > 0, is

V (r) =
±e2

r
, (A.1)

where the signs, (+,−), correspond to repulsion and attraction respectively. In
our units the fine structure constant is dimensionless and

e2

~c
∼=

1

137
· (A.2)
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From the Compton wavelength relation below,

λC =
2π~

mc
=

2π~c

mc2
, (A.3)

it follows that in natural units all quantities have dimensions of length, L, or
inverse length. In particular [E] = [p] = [m] = L−1.

It is also useful to keep in mind that since the differential cross section has
dimensions of area, [

dσ

dΩ

]
= L2, (A.4)

we have that the scattering amplitude has dimensions of length,

[f(p, θ)] = L . (A.5)

B Review of scattering theory

In this Appendix we outline some relevant material leading to the Schrödinger
equation for elastic scattering by a central potential [1], [2], [36], [37], the defini-
tion of the scattering amplitude, f(p, θ) and the Born approximation, fB(p, θ).

B.1 The scattering amplitude

In the center of mass system we let ~p1, ~p2 be the incoming particle momenta,
and ~p ′

1
, ~p ′

2
the outgoing particle momenta. In elastic scattering the incoming

and outgoing particles are the same, moreover their kinetic energies must be
equal before and after the collision, thus it follows that

p = |~p1| = |~p2| = |~p ′
1
| = |~p ′

2
| . (B.1)

We also define the momentum transfer vector ~q,

~q = ~p ′
1
− ~p1, (B.2)

and using Eq. (B.1), we have that

q2 = 2p2(1− cos θ), (B.3)

where θ is the the center of mass scattering angle, θ ∈ [0, π]. In Fig. 1 we show
the ingoing and outgoing momenta for elastic scattering in the center of mass
frame.

In the center of mass the Schrödinger equation for the wavefunction ψ is

△ψ(~r) + 2m (E − V (r))ψ(~r) = 0, (B.4)
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Figure 1: Ingoing and outgoing momentum vectors for elastic scattering in the center
of mass frame.

where △ is the Laplacian in spherical coordinates (r, θ, φ). Since our potential
depends only on r, the wavefunction ψ will be independent of the azimuthal
angle φ. The energy E = p2/2m. The mass m is the reduced mass of the
system,

m =
m1m2

m1 +m2

· (B.5)

In the time-independent description of scattering, in the asymptotic region,
where V (r) ≃ 0, the total wavefunction consists of three parts. Two plane
waves, one representing the incident particles and one with the same momentum
corresponding to the unscattered particles, these are indistinguishable in the
time-independent description and so we write

ψin = ei~p·~r = eipz, (B.6)

where we have chosen z to be along the incident beam direction (the polar axis).
The third part of the wavefunction is an outgoing spherical wave corresponding
to the scattered particles, which we write as,

ψsc ≈ f(p, θ)
eipr

r
· (B.7)

We point out the following useful relations,

~p ′
1
= p

~r

r
, (B.8)

~p ′
1
· ~r = p r, (B.9)

~p1 · ~p
′
1
= p2 cos θ. (B.10)
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In fact then,

ψ(~r) = eipz + f(p, θ)
eipr

r
+ O

(
1

r2

)
. (B.11)

The function f(p, θ) is the scattering amplitude and is in turn related to the

differential scattering section by the relation

dσ

dΩ
= |f(p, θ)|2 . (B.12)

The differential cross section dσ/dΩ is equal to the number of particles (of a
given kind) scattered in the direction θ, per unit solid angle, per unit time, per

unit incident flux, per scatterer.

Although we have skipped a lot of important details, we would like to mention
that the normalization of the asymptotic form of ψ in Eq. (B.11) was chosen so
as to agree with our definition of dσ/dΩ. In summary, we see that in order to
obtain f(p, θ), we have to solve the Schrödinger equation for ψ, and then find
its asymptotic form, Eq. (B.11).

We should add that the case of identical particles requires special care, since
ψ has to be made symmetric or antisymmetric depending on whether the total
spin of the incoming particles is even or odd respectively. We refer the interested
reader to the best treatment on this subject, namely, section 137 of [1].

B.2 The Born approximation

Schrödinger’s equation (B.4) can be converted into the integral equation [37]

ψ(~r) = ei~p·~r −
m

2π

∫
eip|~r−~r ′|

|~r − ~r ′|
V (r′)ψ(~r ′)d3r′, (B.13)

where V (r′) is again a spherically symmetric potential. The integral equation
(B.13) is exact and has the advantage that it is constructed so that the “bound-
ary condition” of Eq. (B.11) is satisfied automatically by the solution ψ(~r).
It was shown by Born [8], that the above integral equation may be solved by
iterating ψ. The resulting series is called the Born series.

In the present paper we are concerned with the lowest order term in the Born
series, the so-called Born approximation. In order to calculate this term, we
have to make some reasonable approximations to Eq. (B.13). If we assume
that V (r′) decreases sufficiently rapidly, as r′ becomes large, then the domain
of integration over r′ is essentially finite and for r very large, we can write

|~r − ~r ′| = r

(
1 +

(r′)2

r2
−

2~r · ~r ′

r2

)1/2

≈ r −
~r · ~r ′

r
· (B.14)
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Although we may further approximate, |~r − ~r ′| ∼ r in the denominator of the
integrand, the exponential depends sensitively r′, no matter how large r is.
Nonetheless, using Eq. (B.8), we may write

eip|~r−~r ′| ≈ e
ip
(

r−~r·~r
′

r

)

= eip r−i~p ′

1
·~r ′

. (B.15)

Then, using Eqs. (B.14) and (B.15), we can simplify Eq. (B.13)

ψ(~r) ≈ ei~p·~r −
m

2π

(
eipr

r

)∫
e−i~p ′

1
·~r ′

V (r′)ψ(~r ′)d3r′, (B.16)

and comparing with Eq. (B.11), we obtain

f(p, θ) = −
m

2π

∫
e−i~p ′

1
·~r ′

V (r′)ψ(~r ′)d3r′. (B.17)

It is important to realize that although we did some approximations in obtain-
ing the asymptotic expression of Eq. (B.13), the expression for the scattering
amplitude f(p, θ) above is exact. The lowest order approximation for ψ(~r ′) is
(see Eq. (B.16)),

ψ(~r ′) ∼ ei~p1·~r
′

, (B.18)

thus the scattering amplitude Eq. (B.17) becomes

fB(p, θ) = −
m

2π

∫
e−i(~p ′

1
−~p1)·~r ′

V (r′)d3r′, (B.19)

= −
m

2π

∫
e−i~q·~r ′

V (r′)d3r′, (B.20)

where we have used the momentum transfer, ~q, Eq. (B.2). At this point we may
drop the primes, without any danger of confusion, and obtain our Eq. (2.3).

C Oppenheimer’s choice

Before proceeding we remind the reader that the angle ϑ, in the spherical co-
ordinates below, is not related to the scattering angle θ in Eq. (2.2). We now
consider the momentum transfer vector ~q and the radial vector ~r, with Cartesian
components,

~q = (qx, qy, qz ) , (C.1)

~r = (x, y, z ). (C.2)

If we choose ~q to be along the polar axis (i.e., the positive z-axis) then

~q = (0, 0, q ). (C.3)
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The Cartesian components of ~r expressed in spherical coordinates,(r, ϑ, φ), are

~r = (r sinϑ cosφ, r sinϑ sinφ, r cosϑ ), (C.4)

thus
~q · ~r = q r cosϑ. (C.5)

Likewise if, instead,we express the Cartesian components of ~r in cylindrical
coordinates, (z, ̺, ϕ), we have

~r = (̺ cosϕ, ̺ sinϕ, z ), (C.6)

we have
~q · ~r = q z. (C.7)

Oppenheimer [10] chose ~p1 to be along the positive z-axis, so that

~p1 = (0, 0, p ). (C.8)

Then ~p ′
1
, without loss of generality, may be written as (see Fig. 1)

~p ′
1
= (p sin θ, 0, p cos θ ), (C.9)

hence
~q = (p sin θ, 0, p cos θ − p ). (C.10)

So using Eq. (C.6) we obtain

~q · ~r = p̺ sin θ cosϕ+ p(cos θ − 1)z. (C.11)

As the reader may check by referring to [10], the above choice complicates his
calculation considerably.

References

[1] L. D. Landau, E. M. Lifshitz, Quantum Mechanics, 3rd Ed. (Pergamon
Press, New York, 1977).

[2] S. Weinberg, Lectures on Quantum Mechanics, 2nd Ed. (Cambridge Un.
Press, Cambridge, 2015).

[3] E. S. Abers, Quantum Mechanics, (Pearson Education, Inc., New Jersey,
2004).

[4] R. E. Kozack, “Born approximation and differential cross sections in nuclear
physics,” Am. J. Phys. 59, 74-79 (1991).

[5] E. Rutherford, “The scattering of α and β particles by matter and the
structure of the atom,” The London, Edinburgh, and Dublin Philosophical
Magazine and Journal of Science, 21, 669-688 (1911).

19



[6] L. D. Landau, E. M. Lifshitz, Mechanics, 3rd Ed. (Butterworth-Heinemann,
Oxford, 1976), Secs. 18 and 19.

[7] M. Born, “Zur Quantenmechanik der Stossvorgänge,” Zeitschrift für Physik
37, 863-867 (1926).

[8] M. Born, “Quantenmechanik der Stossvorgänge,” Zeitschrift für Physik 38,
803-827 (1926).

[9] G. Wentzel, “Zwei Bemerkungen über die Zerstreuung korpuskularer
Strahlen als Beugungserscheinung,” Zeitschrift für Physik 40, 590-593
(1926).

[10] J. R. Oppenheimer, “Bemerkung zur Zerstreuung der α-Teilchen,”
Zeitschrift für Physik 43, 413-415 (1927).

[11] L. D. Landau, E. M. Lifshitz, A Shorter Course of Theoretical Physics,

Vol. 2, Quantum Mechanics, (Pergamon Press, New York, 1974). Sec. 68.

[12] V. de Alfaro, T. Regge, Potential Scattering, (North-Holland Pub., Ams-
terdam, 1965).

[13] H. Yukawa, “On the interaction of elementary particles. I,” Proc. Phys.-
Math. Soc. (Japan) 17, 48-57 (1935).

[14] M. D. Semon, J. R. Taylor, “Cross sections for screened potentials,” J.
Math. Phys. 17, 1366-1370 (1976).

[15] D. M. Goodmanson, J. R. Taylor, “Coulomb scattering as the limit of
scattering off smoothly screened Coulomb potentials,” J. Math. Phys. 21,
2202-2207 (1980).

[16] H. H. Andersen, F. Besenbacher, P. Loftager, W. Möller, “Large-angle
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